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Abstract. The Roth’s two-pole approximation has been used by the present authors to investigate the role
of d − p hybridization in the superconducting properties of an extended d − p Hubbard model. Supercon-
ductivity with singlet dx2−y2 -wave pairing is treated by following Beenen and Edwards formalism. In this
work, the Coulomb interaction, the temperature and the superconductivity have been considered in the
calculation of some relevant correlation functions present in the Roth’s band shift. The behavior of the
order parameter associated with temperature, hybridization, Coulomb interaction and the Roth’s band
shift effects on superconductivity are studied.

PACS. 71.27.+a Strongly correlated electron systems; heavy fermions – 71.10.Fd Lattice fermion models
(Hubbard model, etc.) – 74.25.Dw Superconductivity phase diagrams

1 Introduction

After almost two decade of intense research about the
cuprates, there is still plenty of open questions in this
problem. However, it is recognized that the electrons
which move on the CuO2 planes are the most relevant
to describe their physical properties [1]. In the undoped
regime, these compounds are insulators and exhibit an-
tiferromagnetic order at sufficient low temperatures [1,2].
The physical properties of the insulating phase can be well
described by the Heisenberg model [2]. Upon doping, these
systems suppress the antiferromagnetic order and become
superconductors. In this scenario there is no doubt that
the d-d electron correlations play a fundamental role.

The study of the electronic structure near the Fermi
level εF in such strongly correlated systems is very impor-
tant to understand their physical properties [3]. Earlier
angle-resolved photoemission experiments (ARPES) have
showed the presence of flat bands close to εF in a region
centered around the point (π, 0) in the p-type cuprates
like Bi2Sr2CuO6 and YBa2Cu3Oy [3,4]. Due to the pres-
ence of strong correlations, to study some physical prop-
erties of these cuprate compounds, the one-band Hubbard
model [5] can be used. Bulut et al. [6,7] have done Monte
Carlo calculations in the one-band Hubbard model. Their
results show bands with a flat region near (π, 0) point for a
given doping which agreed with the previously mentioned
ARPES results [3].

Beenen and Edwards [8], using the Roth’s two-pole
approximation [9] in the one-band Hubbard model, have
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studied the normal state of the model obtaining flat quasi-
particle bands, which agree well with those found with
Monte Carlo simulations [6,7]. The Roth’s two-pole ap-
proximation has been proposed to improve the Hubbard-I
approximation [5] by considering a decoupling scheme
which produces an additional energy shift (the Roth’s
band shift) in the peaks of the spectral function. That
result is in agreement with those obtained by Harris and
Lange [10]. They looked at the moments of individual
peaks in the spectral function. The presence of the ex-
change term 〈SiSj〉 in the Roth’s band shift exhibits in
it a spin dependence. As consequence, the Roth’s method
raises the possibility of magnetic solution in the Hubbard
model while this feature is not present in the Hubbard-I
approximation. Recently, due to the good agreement be-
tween the Roth’s and the Monte Carlo data, Beenen and
Edwards have extended the Roth’s two-pole approxima-
tion in order to investigate the superconducting properties
of the one-band Hubbard model. Their main achievement
has been to show the emergence of the pairing with dx2−y2

symmetry in a given amount of doping. In that approach,
the gap equation for d-wave symmetry depends on a par-
ticular four operator correlation function which, in princi-
ple, can be found extending the Roth’s formalism to obtain
two particle Green’s functions. However, the authors have
introduced two decoupling schemes to calculate the gap.
The first one (the factorization procedure) has been for-
mulated to treat the problem for intermediated values of
U (the Coulomb interaction) and it provides an upper es-
timate for the gap and Tc (the critical temperature). The
second one is adapted for very large U scenario which
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preserves the proper limit for U → ∞ where the gap func-
tion vanishes.

Nevertheless, the one-band models neglect the pres-
ence of the oxygen sites. Due to the strong correlations
at the Cu-sites, the oxygen sites may be occupied by
holes when the system is doped [2]. For instance, the
Hubbard one-band model suffers some limitations to de-
scribe the low-energy physical properties of the cuprate
superconductors [11]. In the doped regime, the one-band
Hubbard model gives a wrong description of various prop-
erties, like, for example, the asymmetric magnetic doping-
temperature phase diagram [12]. Therefore, a model which
take into account also the oxygen can be more adequate to
treat the cuprate systems in the doped regime [13]. This
raises the question whether it is possible to extend the
Beenen and Edwards analysis to investigate the d-wave
symmetry superconductivity when the hybridization is
present.

Recently, the present authors have used the extended
Hubbard model [13] with the Roth’s method to study
the role of hybridization in the superconductivity follow-
ing closely the approach introduced by Beenen and Ed-
wards [14]. As discussed in the references [8] and [15], the
flattening of the bands is directly related to the band shift.
The presence of flat bands at Fermi level εF in the p-type
cuprates [3] suggests a high density of states at the Fermi
level, which can favor pair formation. Therefore, consider-
ing that the main responsible elements for the density of
states at the Fermi level are the d-electrons, it has been
assumed in reference [14] that the d−d pairs are the most
relevant ones for superconductivity [16].

The band shift plays an important role in the study
of the superconducting properties of the model using the
Roth’s or some similar procedures. In reference [14], the
factorization procedure [8] has been used to investigate
the effects of the hybridization on the superconductivity.
It has been shown [14] that the hybridization has strong
effects in the shift and, therefore, in some superconduct-
ing physical properties such as the critical temperature
Tc. However, as a first approach, in reference [14], the
band shift has been evaluated taking into account the hy-
bridization effects, but disregarding temperature effects,
superconducting properties and, most important, it has
been considered in the limit U → ∞. As a consequence
of this limit, many correlation functions, which appear in
the shift, are vanished. The important point is that these
correlation functions are very relevant in the sense of to
include correctly the hybridization effects. Therefore, it
would be necessary to calculate the shift with the U fi-
nite in order to include the hybridization effects in a more
complete way.

In this work, the superconductivity problem has been
studied using the Roth’s method, following closely refer-
ence [8], but adapted to the d-p extended Hubbard model.
Here, special attention is devoted to the effects of the hy-
bridization and superconductivity in the band shift. In or-
der to have the effects of the hybridization included prop-
erly in the superconductivity, the gap function is obtained
using the factorization procedure [14] and the shift is eval-

uated with finite U . This procedure is justified because it
preserves some correlation functions present in the band
shift, which are non vanishing for finite U . As consequence,
it captures the effects of the hybridization properly. Some
preliminary results of this approach have been given in
reference [17].

There are some shortcomings in the Beenen and Ed-
wards approach [18,19]. For instance, the dx2−y2 pairing
is quite dependent on the choice of the decoupling scheme
for the correlation functions related to the gap. However,
in the present work, the main goal is to study the effects
of hybridization. Therefore, as discussed in the previous
paragraph, the natural choice is the decoupling scheme
for intermediated U , which is also the simplest one. One
is allowed to find in that procedure, at least, a better es-
timate for the gap (and therefore for Tc) as a function of
hybridization within the same decoupling procedure.

The paper presents the following organization. In Sec-
tion 2 it is introduced the model and given a short in-
troduction of the Roth’s method [9]. Also, some analytic
expressions for quasi-particle bands and the Green’s func-
tions are derived. In Section 3, the factorization procedure
proposed by Beenen and Edwards [8] is applied for the
present case. In Section 4, the band shift is discussed in
detail. The numerical results are showed and discussed in
Section 5. Finally, in Section 6, a short summary and some
concluding remarks are given.

2 General formulation

The model considered here assumes overlapping bands.
It is characterized by a narrow d-like band with a large
density of states and a wide p-like band with low density
of states. The extended Hubbard model is defined as:

H =
∑

i,σ

(εd − µ)d†iσdiσ +
∑

i,j,σ

tdijd
†
iσdjσ + U

∑

i

nd
i↑n

d
i↓

+
∑

i,σ

(εp − µ)p†iσpiσ +
∑

i,j,σ

tpijp
†
iσpjσ

+
∑

i,j,σ

tpd
ij

(
d†iσpjσ+p†iσdjσ

)
(1)

where µ is the chemical potential. The d†iσ , diσ and p†iσ, piσ

are the creation and annihilation operators of the d- and
p-electrons, respectively, with spin σ at a lattice site i. The
εd and εp are the centers of the on site energies of the oc-
cupied orbitals of the copper and oxygen respectively. The
second term of the Hamiltonian given in equation (1) de-
scribes a narrow d-band with a hopping amplitude td. The
Hamiltonian (1) considers also a p-band which is wider
than the d-band. The following relation between td and tp

can be established tp = αtd with α > 1. Also, td < 0 to co-
incide the bottom of the d- and p-bands with the Γ point
kx = ky = 0 as suggested by experimental results [3].
The third term corresponds to the Coulomb interaction
U that represents the repulsion between two holes in the
same d-orbital. The last term of the Hamiltonian (1) is
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the d − p hybridization and describes the nearest neigh-
bor hopping process between the d-orbital of the Cu-atom
and the p-orbital of the O-atom. Considering a rectangular
two dimensional lattice, the unperturbed d- and p-energy
bands are given by

εd
k = 2td(cos(kxa) + cos(kya)) (2)

and
εp

k = 2tp(cos(kxa) + cos(kya)) (3)

where a is the lattice constant.
In this work, the Hamiltonian given in equation (1)

has been investigated using the Roth’s two-pole approxi-
mation [9] to obtain the Green’s function in the Zubarev’s
formalism. In the Roth’s procedure, a set of operators
{An} is introduced in order to describe the relevant one
particle excitations of the system. These operators satisfy
in some approximation the following relation:

[An, H ](−) =
∑

m

KnmAm. (4)

Anticommuting both sides of equation (4) with each
operator of the set {An} and taking the thermal average,
the equation (4) becomes:

Enm =
∑

m

KnmNnm (5)

where Enm and Nnm are the energy and normalization
matrices, given by

Enm =
〈[

[An, H ](−) , A†
m

]

(+)

〉
(6)

and
Nnm = 〈[An, A†

m](+)〉. (7)

In matrix notation, equation (5) is written as E = K ·N,
where, if N is nonsingular, then the K matrix can be ob-
tained. With the equation of motion (in the Zubarev’s
formalism) of the Green’s function

Gnm (ω) = 〈〈An; A†
m〉〉ω (8)

and the equations (4–7), it is possible to obtain the fol-
lowing general Green’s functions

〈〈An; B〉〉ω =
∑

m

G̃nm(ω)〈[Am, B](+)〉. (9)

In the particular case, where B = A†
m, the elements of

the Green’s function matrix G are given by equation (8).
Thus, using the matrices E and N, the matrix G is
given by

G (ω) = G̃(ω)N (10)

where
G̃ (ω) = N(ωN− E)−1. (11)

Considering the fact that the operators of the set {An}
describe the particle excitations of the system, the choice

of these operators is very relevant to study the physical
properties of the system. In order to discuss superconduc-
tivity, Beenen and Edwards, in their approach with the
one-band Hubbard model, mixed electron and hole op-
erators and evaluated anomalous correlation functions [8].
Therefore, using a set of four operators {ciσ, ni−σciσ, c†i−σ,

niσc†i−σ}, it has been obtained a four-pole approximation
to the Green’s functions. However, in order to discuss the
role of the hybridization, it is necessary to adapt the for-
malism to include a p-operator in the original set of oper-
ators used by Beenen and Edwards. Thus, the new set of
operators is given by

{
diσ, nd

i−σdiσ, d†i−σ , nd
iσd†i−σ , piσ

}
. (12)

In the present work, only the singlet pairing is consid-
ered, and particularly the d-wave symmetry. In this par-
ticular case, 〈di−σdiσ〉 = 0 and

∑

l

〈di−σdlσ〉 = 0, where l

are the nearest neighbors of i. Using the set of operators
given in equation (12), and introducing the symmetries
discussed above, the elements of the energy matrix de-
fined in equation (6) can be obtained as:

E5 =





E2

0 0

0 γk

V dp
k

nd
−σV dp

k

0 0

0 γk
∗

−E2

0

0

V pd
k nd−σV pd

k
0 0 εp − µ + εp

k





(13)

where V dp
k and V pd

k are the Fourier transform of tdp
ij and tpd

ij
respectively. The matrix E2 present in the energy matrix
E5 is given by:

E2 =




εd + εd

k + Und
−σ (εd + εd

k + U)nd
−σ

(εd + εd
k + U)nd−σ Und−σ + Γk−σ



 (14)

where εd = εd − µ. It is assumed that the system consid-
ered here is translationally invariant, then nd−σ = nd

i−σ.
The quantity Γk−σ is the Fourier transform of

Γij−σ = (εd −µ)nd
−σδij + tdij(n

d
−σ)2 +nd

−σ(1−nd
−σ)Wij−σ .

(15)
In equation (15), the band shift Wij−σ is defined as:

Wij−σ =
tdij

(〈nd
i−σnd

j−σ〉 − (nd
−σ)2

)
+ Λijσ

nd−σ(1 − nd−σ)
(16)

where Λijσ can be separated into two explicit contribu-
tions

Λijσ = Λd
ijσ + Λpd

ijσ . (17)

The terms Λd
ijσ and Λpd

ijσ are associated with the hopping
tdij and the hybridization tpd

ij , respectively. The hybridized
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term of Λijσ may be written as

Λpd
ijσ =

∑

l

tpd
il [2〈p†l−σnd

iσdi−σ〉 − 〈p†l−σdi−σ〉]δij , (18)

and the part associated to the hopping tdij is given by

Λd
ijσ =

∑

l

tdil

{
〈nd

iσd†i−σdl−σ〉 + 〈nd
iσd†l−σdi−σ〉

+ 〈d†i−σdl−σnd
i−σ〉 − 〈d†l−σdi−σnd

i−σ〉
}

δij

− tdij{〈d†jσd†j−σdi−σdiσ〉 + 〈d†jσd†i−σdj−σdiσ〉}.
(19)

The calculation of the correlation functions presented in
equations (18) and (19) will be discussed in detail in Sec-
tion 4.

One of the most important elements of the matrix E5

is E24 = γk, where

γk =
∑

〈l〉i
tdile

ik·(Rl−Ri)γil (20)

and
γil = 〈nd

i−σdlσdl−σ + nd
lσdiσdi−σ〉. (21)

The correlation function γk gives the gap of the supercon-
ductor state in the d−wave case.

The elements of the normalization matrix N5 are given
from equation (7) as:

N11 = N33 = N55 = 1 (22)

and

N12 = N21 = N22 = N34 = N43 = N44 = nd
−σ. (23)

The remaining elements of the normalization matrix
N5, due to the d-wave symmetry and the anticommution
rules, have been found to be zero.

Using the energy and the normalization matrices E5

and N5, respectively, the matrix Green’s function G5 de-
fined in equation (10) can be obtained. For simplicity, only
the most relevant elements (for the purposes of this work)
of this (5× 5) G5 matrix are shown. Following the Roth’s
notation [9], the correlation function 〈BA〉 is related to
the Green’s function 〈〈A; B〉〉ω as:

〈BA〉 = Fω〈〈A; B〉〉ω ≡ 1
2πi

∮
dωf(ω)〈〈A; B〉〉ω , (24)

where f(ω) is the Fermi function. The chemical potential
µ is obtained in the standard way, using the element G11

kσ
of the matrix G5 and the relation given in equation (24).
The matrix element G11

kσ is given by

G11
kσ(ω) =

(ω − E55)
[
A (ω) − (ω + E11)γk

2
]

D (ω)
, (25)

where E11 and E55 are elements of the energy matrix E5,
defined in equation (13). In equation (25), it is also nec-
essary to introduce the following definitions:

A(ω) = (nd
−σ)2(1 − nd

−σ)2

×(ω3 + α
(1)
kσ ω2 + α

(2)
kσ ω + α

(3)
kσ ) (26)

with
α

(1)
kσ = E11, (27)

α
(2)
kσ = Z(1)

kσ Z(2)
kσ − (Z(1)

kσ + Z(2)
kσ )(Z(1)

kσ + Z(2)
kσ − E11) (28)

and
α

(3)
kσ = −Z(1)

kσ Z(2)
kσ (Z(1)

kσ + Z(2)
kσ − E11). (29)

The quantities Z(1)
kσ and Z(2)

kσ are defined as

Z(1)
kσ =

U + 2(εd − µ) + εd
k + Wk−σ

2
− ∆kσ

2
(30)

and,
Z(2)

kσ = Z(1)
kσ + ∆kσ. (31)

In the particular case, when εd, γk and tpd
ij are zero, Z(1)

kσ

and Z(2)
kσ represent the quasi-particle bands in the para-

magnetic normal state of the one-band Hubbard model.
The term ∆kσ is given by:

∆kσ =
√

(U + Wk−σ − εd
k)2 + 4nd−σU(εd

k − Wk−σ) (32)

where Wk−σ is the Fourier transform of Wij−σ given in
equation (16). The denominator of the Green’s function
G11

kσ given in equation (25) is defined as:

D(ω) = (ω − E55)D(ω) − V dp
k V pd

k

[
A(ω) − (ω + E11)γk

2
]

(33)

where
D(ω) = D(ω) − γk

2(ω2 − E2
11) (34)

with

D(ω) = [(ω − E11)(ωnd
−σ − E22) − (ωnd

−σ − E12)2]

×[(ω + E11)(ωnd
−σ + E22) − (ωnd

−σ + E12)2].
(35)

In equation (35), E12 and E22 are elements of the en-
ergy matrix E2 given in equation (14). The use of a set
of five operators An results in a five-pole approximation
to the Green’s functions. Then, the D(ω) defined in equa-
tion (33) may be also written as:

D (ω) = (nd
−σ)2(1 − nd

−σ)2(ω − E1k)(ω − E2k)(ω − E3k)
×(ω − E4k)(ω − E5k) (36)

where the quasi-particle bands Epk (with p = 1, .., 5) sat-
isfy D = det(ωN5 − E5) = 0. Therefore, the resulting
Green’s function can be written as a sum of five terms:

G11
kσ(ω) =

5∑

p=1

Zpkσ

ω − Epkσ
(37)

where Zpkσ express the spectral weights which satisfy

Z1kσ + Z2kσ + Z3kσ + Z4kσ + Z5kσ = 1. (38)
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3 Calculation of the gap function using
the factorization procedure

In the case of d-wave symmetry, the traditional corre-
lation function 〈di−σdiσ〉 is always zero. Therefore, this
correlation function can not be used to determinate the
pairing gap in the d-wave channel [8,18]. In the factoriza-
tion procedure proposed by Beenen and Edwards in ref-
erence [8], the correlation function given by equation (21)
is rewritten as

γil = [〈d†i−σdl−σ〉 + 〈d†lσdiσ〉]〈di−σdlσ〉 (39)

where the symmetry γil = γli is conserved, and the prod-
ucts dlσdl−σ and di−σdiσ are split up. It is also introduced

nd
01σ = 〈d†i−σdl−σ〉 = 〈d†lσdiσ〉 (40)

which allows to rewrite equation (39) as

γil = 2nd
01σ〈di−σdlσ〉 (41)

where nd
01σ can be calculated from G11

kσ .
Considering the d-wave symmetry, the Fourier trans-

form of γil given by equation (20) becomes

γk = g [cos (kxa) − cos (kya)] (42)

where
g = 2tdγ (43)

is the gap-function amplitude. Due to the d-wave symme-
try, γil = +γ for Ri −Rl in the x direction and γil = −γ
when Ri −Rl is in the y direction. The Fourier transform
of the correlation function 〈di−σdlσ〉 is given by

〈di−σdlσ〉 =
1
L

∑

k

eik·(Rl−Ri)〈dk−σdkσ〉 (44)

where L is the number of sites in the system. The cor-
relation function 〈dk−σdkσ〉 can be evaluated using the
Green’s function G13

kσ and the relation given by equat-
ion (24). The Green’s function G13

kσ can be rewritten as:

G13
kσ(ω) = −γkU2F 13

kσ (45)

where

F 13
kσ(ω) =

(nd−σ)2(1 − nd−σ)2(ω − E55)
D (ω)

(46)

and D(ω) is defined in equation (33).
Combining the equation (20) with the equations (41)

to (45), the gap equation can be written as:

γk = −γk2nd
01σtdU2Iσ (47)

where
Iσ =

1
2πi

∮
f(ω)Fσ(ω)dω (48)

with

Fσ(ω) =
1
L

∑

q

[cos (qxa) − cos (qya)]2 F 13
qσ (ω). (49)

4 Definition and calculation of the band shifts

Using the definition (17) in equation (16), the band shift
Wij−σ can be written as:

Wij−σ = W d
ij−σ + W pd

ij−σ (50)

where

W d
ij−σ =

tdij [〈nd
i−σnd

j−σ〉 − (nd−σ)2] + Λd
ijσ

nd−σ(1 − nd−σ)
(51)

and

W pd
ij−σ =

Λpd
ijσ

nd−σ(1 − nd−σ)
. (52)

The quantity Λpd
ijσ is given by equation (18). The correla-

tion function 〈p†l−σdi−σ〉 present in Λpd
ijσ can be obtained

from de Green’s function

G15
kσ(ω) =

[
A (ω) − (ω + E11)γk

2
]
V pd

k

D (ω)
. (53)

The remaining correlation function 〈p†l−σnd
iσdi−σ〉 present

in Λpd
ijσ is calculated from the Green’s function

G25
kσ(ω) =

nd
−σ

[
B (ω) − (ω + E11)γk

2
]
V dp

k

D (ω)
, (54)

where

B (ω) = A (ω) + nd
−σ(1 − nd

−σ)2UD1(ω) (55)

with A (ω) defined in equation (26). The quantity D1(ω),
in terms of the elements of the energy matrix (13), is
given by:

D1(ω) = (ω − E11)(ωnd
−σ − E22) − (ωnd

−σ − E12)2. (56)

The Green’s function G25
kσ tends to zero as U → ∞,

consequently, the correlation function 〈p†l−σnd
iσdi−σ〉 also

vanishes recovering the result of reference [14] for Λpd
ijσ .

The quantity Λd
ijσ present in equation (51) is given by

equation (19). The Fourier transform of W d
ijσ is given by:

W d
kσ =

∑

〈j〉i
eik·(Rj−Ri)W d

ijσ . (57)

Substituting equation (19) into equation (51) and then
putting the result into equation (57), the Fourier trans-
form of W d

ijσ can be written as:

W d
kσ = − 1

nd
σ(1 − nd

σ)

∑

j �=0

td0j〈d†0σdjσ(1 − nd
0−σ − nd

j−σ)〉

+
∑

j �=0

td0je
ik·Rj

{〈nd
jσnd

0σ〉 − 〈nd
0σ〉2

+ 〈d†jσdj−σd†0−σd0σ〉 − 〈d†jσd†j−σd0−σd0σ〉
}

. (58)
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The correlation functions present in W d
kσ are evaluated

following the original Roth’s procedure [9]. Introducing
extra operators Biσ, the correlation functions of the form
〈AnBiσ〉 can be calculated by using equations (9) and (24).
In references [8,14], the sum present in equation (9) has
been considered only over the operators which describe
the normal state of the system. In the present work, the
sum includes also the hole operators which describe the
superconducting properties of the system. Thus, W d

kσ is
given by:

nd
σ(1 − nd

σ)W d
kσ = h1σ +

∑

j �=0

td0je
ik·Rj (h2jσ + h3jσ) (59)

where the term h3jσ is directly related to the gap func-
tion γk through the Green’s functions G13

kσ and G14
kσ (see

Appendix A). The quantities h1σ, h2jσ and h3jσ are given
in Appendix A.

5 Results

In this section, the numerical results obtained in this work
are presented. One of the most important parameters of
the model given in equation (1) is the d − p hybridiza-
tion [14,20], which is defined as

V dp
k = −iV dp

0 [sin(kxa) − sin(kya)]. (60)

In this work, as in reference [20], the hybridization has
been assumed k-independent (V dp

0 )2 ≡ 〈V dp
k V pd

k 〉, where
〈...〉 is the average over the Brillouin zone. In reference [21]
Sengupta and Ghatak have also used a k-independent hy-
bridization due to the fact that the pairs occur within a
small energy interval around the Fermi level, therefore the
dispersion of the hybridization can be neglected.

The total occupation number is given by
nT =nd

σ+nd
−σ, where nd

σ is obtained combining G11
kσ

(Eq. (25)) and the relation given in equation (24). The
charge transfer energy ∆ = εp−εd is positive. This means
that the first hole added to the system will energetically
prefer to occupy the d-orbital of the copper ions [1]. All
results presented in this section are obtained with εd = 0
and εp = 3.6 eV. Consequently, ∆ = 3.6 eV, as estimated
in reference [22].

As discussed in references [8,9], the band shift Wkσ

(see Eq. (50)) can be evaluated considering different ap-
proximations. In the limit U → ∞, some terms of the band
shift vanish (see Ref. [9]). In reference [14], the present
authors estimate Wkσ in the limit of U → ∞, but with
finite U in other parts of the problem. In reference [8],
Beenen and Edwards evaluated Wkσ in the normal state
(where γk = 0) and considering T equal to zero and fi-
nite U using the one-band Hubbard model (hybridiza-
tion null). In the present work, the correlation functions
present in Wkσ given in equation (58) are evaluated fol-
lowing closely the procedure used by Roth in reference [9].
Nevertheless, here, also the hole operators given in the set

Table 1. The different approaches considered for evaluate the
band shift Wkσ.

U γk T V pd
0 h3jσ

Beenen and
Edwards [8] finite 0 0 0 0

Ref. [14] ∞ 0 0 finite 0

Present work finite finite finite finite finite

  

Fig. 1. (a) The quasi-particle bands for U = 12|td|, V pd
0 =

0.2|td| and nT = 0.76. (b) The electron and hole bands in
the neighborhood of the (π, 0) point where the gap structure
is relevant. The dashed lines show the result for V pd

0 = 0.0

while the solid lines correspond to V pd
0 = 0.2|td|. (c) shows the

hybridization (V pd
0 ) gap near the point (π, π).

of equation (12) are used to evaluate the correlation func-
tions. As consequence, a new term (h3jσ) appears in Wkσ

(see Eq. (59)). The approximations used to evaluate Wkσ

are shown in Table 1. In Figure 1a, the quasi-particle
bands Epk, with p = 1..5 (see Eq. (36)), are plotted along
the symmetry lines (0, 0) − (π, π) − (π, 0) − (0, 0), in the
two-dimensional Brillouin zone. The quasi-particle ener-
gies Epk, in the superconducting state, are relative to the
chemical potential µ. The circles show the εp

k band, where
the center of εp

k is shifted by εp = 3.6 eV relative to the
zero of energy. All results shown in this paper are obtained
with tp = 2td. The dashed line corresponds to the nonin-
teracting (U = 0) band εd

k relative to the noninteracting
chemical potential. Figure 1b shows the superconducting
gap between the electron and hole bands in the neigh-
borhood of the (π, 0) point, while on the kx = ky diagonal
(Fig. 1a) the gap is zero. This fact reflects the d-wave sym-
metry proposed in this work. The dashed lines show the
absence of the gap in the normal state. In Figure 1c, the
region near to the (π, π) point shows the gaps produced
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Fig. 2. The electron and hole bands in the region close to
the (π, 0) point for U = 12|td| and nT = 0.76. The solid lines
correspond to V pd

0 = 0.0, while the dashed lines show the result

for V pd
0 = 0.3|td|.

Fig. 3. The spectral weights Zpkσ for U = 12|td|, nT = 0.76,
T = 0 and two different values of hybridization.

by the d − p hybridization V pd
0 . The dashed lines show

the result for V pd
0 = 0. In Figure 2, the electron and hole

quasi-particle bands are shown for two different values of
hybridization. As can be observed, the hybridization shifts
the quasi-particle bands to lower energy by breaking the
symmetry in relation to the k axis.

Figure 3 shows the spectral weights Zpkσ for two dif-
ferent hybridization. The dashed line corresponds to the
sum of the five spectral weights which is equal to one (see
Eq. (38)). In Figure 3b, the effects of the hybridization on
the spectral weights are shown. Such effects cause a small
change in the chemical potential and consequently in the
superconductivity.

Fig. 4. Behavior of the gap function amplitude g as a function
of the hybridization V pd

0 for T = 0.004 eV.

Fig. 5. Function Fσ(ω) (defined in Eq. (49)) for U = 12|td|,
nT = 0.76, T = 0 and two different hybridization.

Figure 4 shows the behavior of gap function amplitude
g as a function of the hybridization V pd

0 . It is clear that
there is a decreasing of g with increasing V pd

0 .
The analysis of the function Fσ(ω) introduced in equa-

tion (48) and defined in equation (49) is important to
understand the behavior of the gap function amplitude
showed in Figure 4. Figure 5 shows the function Fσ(ω)
for T = 0 and two different values of hybridization. As
can be seen in the dashed line, the magnitude of the func-
tion Fσ(ω) decreases when the hybridization is enhanced.
Moreover, the function is shifted to lower energy, breaking
the symmetry respect to ω = 0. The symmetry break has
been also observed in Figure 2 for the electron and hole
quasi-particle bands. For T = 0, the product f(ω)Fσ(ω)
given in equation (48) vanishes when ω > 0. That is be-
cause the Fermi function f(ω) is zero for that range of ω.
As consequence of the shift and the suppression of Fσ(ω),
the value of Iσ, which is given by the integral in equa-
tion (48), decreases when the hybridization increase. How-
ever, from equation (47), it is necessary a minimum value
for Iσ to obtain a nonzero solution for γ. But, for very
strong values of hybridization, the minimum value for Iσ

is not reached and only the zero solution exists.
According to this analysis, there is a critical value of

hybridization (V pd
0c ), above which, the superconductivity
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Fig. 6. The gap function amplitude g, as a function of tem-
perature T , for U = 12|td|, nT = 0.76 and several values of
hybridization. (td = −0.5 eV.)

is suppressed. Similar results, which show a critical value
for the hybridization, were also obtained in reference [23],
for a k-dependent hybridization and using the Hartree-
Fock approximation for the electron-electron interaction.
In references [16,23], although the high Tc was not con-
sidered, the hybridization effects play an important role
for resonant states. The discussion above is also valid if
the values of the temperature T are raised with V pd

0 con-
stant. The only difference is that in this case the Fermi
function becomes sloping smoothly, changing the product
f(ω)Fσ(ω). The effect of the temperature in the Fermi
function causes a decreasing of Iσ and consequently of Tc.

Since the hybridization is directly related to the ap-
plied pressure [16], the transition temperature Tc may
have a dependence on pressure through the hybridization.
However, the pressure dependence of Tc is very compli-
cated in high temperature superconductors. As discussed
in reference [16], at least, in conventional superconduc-
tivity where the electron pairing is mediated by phonons,
two effects are responsible for the pressure dependence of
Tc. The first one is related to the lattice vibrations, while
the second one comes from the electronic contribution. As
long the pressure is increased, the lattice vibrations tend
to increase Tc, whereas the effects of the electronic contri-
bution associated with the hybridization cause a decreases
of Tc. Figure 6 shows the function amplitude g, as a func-
tion of temperature T for several values of hybridization.
If the hybridization is enhanced, the critical temperature
Tc decreases. Therefore, the present results agree with the
discussion above in the scenario where the electronic ef-
fects dominate. This behavior for Tc is also shown in Fig-
ure 7, in phase diagrams displaying Tc versus the total
occupation number nT . The numerical results obtained
show that there is a critical value of hybridization where
the superconducting phase vanishes. These results agree
with the ones obtained by the authors of reference [24] for
heavy-fermion superconductivity with an X-boson treat-
ment.

The solid lines in Figures 7a–b show the present re-
sult for Tc, where the effects of the temperature, the su-
perconductivity and the Coulomb interaction have been

Fig. 7. Tc as a function of the total occupation number nT .
In (a) and (b), the dotted lines show the previous results from
reference [14] for U = 12|td|. The solid lines show the behavior
of Tc in the present approach. The figures (c) and (d) show the
present results for U = 8|td|. (td = −0.5 eV.)

included in the calculation of the band shift Wkσ. The
dashed lines correspond to the results obtained in refer-
ence [14], where the band shift has been evaluated consid-
ering T = 0, γk = 0 and U → ∞ (see Tab. 1). The differ-
ence between the results can be explained by the analysis
of equation (18) where some of the correlation functions
present in the band shift vanish in the U → ∞ limit.
In equation (18), the correlation function 〈p†l−σnd

iσdi−σ〉,
which is directly related to the hybridization effects in
the band shift, vanishes for U → ∞. It is important to
highlight that the correlation functions in equation (18)
are both negative. Therefore, for large U , the correlation
function 〈p†l−σnd

iσdi−σ〉 decreases and the hybridized shift
W pd

σ is enhanced. However, for intermediate values of U ,
both correlation functions remain finite. As consequence,
the hybridization effects in the band shift and, therefore,
in the superconductivity, are weakened. The Figures 7c–d
show the present results when the value of U is increased.
The main consequence is, within the factorization proce-
dure, to shift the window of doping where superconduc-
tivity is found, as in reference [8].

In Figure 8a, the chemical potential is show as a func-
tion of the total occupation number nT for U = 12|td| and
three different hybridizations. In reference [19], the au-
thors criticized the Roth’s method because the compress-
ibility k = ∂nT

∂µ is negative in the vicinity of half-filling in
the Beenen and Edwards result. In reference [18], by us-
ing a composite operator approach and imposing the Pauli
principle, the authors have showed that the compressibil-
ity remains negative. However, they also showed that the
pairing decreases the strength of the negative compress-
ibility.

In the present work, a careful study about the nature
of the negative compressibility and the effect of the hy-
bridization near half-filling in Roth’s approximation has
been carried out. It has been verified that the most im-
portant contribution to provide negative compressibility
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Fig. 8. (a) The chemical potential as a function of the total
occupation number for U = 12|td|, T = 0.004 eV and different
values of hybridization. (b) The gap function amplitude, as
a function of the total occupation number, with U and V pd

0

identical to (a).

comes from the spin-term 〈SjSi〉 present in the d-part W d
kσ

of the Roth’s band shift Wkσ (see Eqs. (58) and (A.34). In
reference [8], it has been showed that the correlation func-
tion 〈SjSi〉 plays an important role on the flattening of
the quasi-particle bands. The correlation function 〈SjSi〉
increases with occupation and its effect is pronounced
near half-filling. Nevertheless, when the hybridization is
present, the numerical results show that it acts in the
sense of suppressing the negative compressibility near half-
filling. Because the hybridization considered here is k-
independent [20], the hybridization term W pd

σ of the band
shift is constant within the Brillouin zone. Its main effect
is to shift the poles of the Green’s functions and conse-
quently to change the value of the chemical potential sup-
pressing the negative compressibility. In Figure 8a, it is
clear that the effect of the hybridization in the chemical
potential decreases the negative compressibility.

Figure 8b shows the gap function amplitude g as a
function of the total occupation number. This result agrees
with those obtained in Figure 4, where g decreases with
increasing of V pd

0 .

6 Conclusions

In this work, the Roth’s two-pole approximation is
extended to study the superconducting properties of the
extended Hubbard model given in equation (1). The qual-
ity of the Roth’s two-pole approximation had been inves-
tigated in a previous work by Beenen and Edwards [8].

In their work, they showed the remarkable agreement be-
tween the Roth’s and the Monte Carlo results [6,7] for
the one-band Hubbard model in the paramagnetic normal
state. Moreover, the flat bands obtained with Roth’s pro-
cedure show a qualitative agreement with the ARPES ex-
periment data [3] in cuprates. It is important to point out
that the flattening observed in the quasi-particle bands
which produces a peak in the density of states, can be
connected with the Van Hove scenario. In cuprate sys-
tems the Van Hove singularity is present in the vicinity
of the Fermi energy. Therefore, it is believed that the Van
Hove scenario play a fundamental role in order to clarify
the mechanism which drives the transition to supercon-
ductivity in these interesting materials [25].

The accuracy of the Roth’s results is very related to the
adequate evaluation of the band shift. Therefore, the focus
of the present work has been to evaluate the Roth’s band
shift taking into account relevant effects as Coulomb inter-
action, temperature, superconductivity and hybridization.
Also, the effect of the hybridization in the superconduct-
ing properties of the model has been studied. This work
has been carried out following the factorization procedure
proposed by Beenen and Edwards [8]. In order to study
superconductivity, Beenen and Edwards proposed to in-
clude hole operators in the original set of operators that
describes the normal state of the system. These opera-
tors can introduce the pairing formation in the d-band.
The factorization procedure proposed by Beenen and Ed-
wards [8] and the d-wave symmetry are considered to ob-
tain the gap function amplitude. The hybridization effects
are considered by also including a p-operator. Thus, the
set of operators is enlarged to five, which results in a five-
pole approximation to the Green’s functions.

The hybridization effects present in the band shift
come from some correlation functions. The important
point is that part of them vanish when U → ∞, as it
have been done in reference [14]. In order to consider prop-
erly the hybridization effects, the band shift should be ob-
tained for finite U . In fact, the obtained phase diagrams
show that the presence of superconducting order exists in
a larger range of doping when compared with the U → ∞
limit [14], for the same hybridization. Therefore, this re-
sult suggests that, in the U → ∞ limit, the hybridization
effects are overestimated. That is the ultimate justifica-
tion for the use of the factorization procedure [8], which is
valid for intermediated values of U for the gap function.

The Beenen and Edwards’s [8] results are recovered
taking V pd

0 = 0 in the present work. The hybridization
V pd

0 breaks the symmetry between the electron and hole
quasi-particle bands, respect to k axis. Also, the gap am-
plitude function g and the critical temperature Tc are sup-
pressed with increasing the hybridization V pd

0 . The results
show that the chemical potential does not change signif-
icantly away the half-filling. However, near half-filling, it
is showed that the negative compressibility decreases with
increasing V pd

0 . The correlation functions present in the
d-part of the band shift Wkσ were discussed in detail.
When the hole operators are also considered to obtain this
correlation functions, a new term appears in the d-part of
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the band shift Wkσ. The new term is directly associated
with the superconducting properties of the system. Nev-
ertheless, this term is quite small and therefore may be
disregarding in the calculation of the band shift.
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Appendix A

The correlation functions present in the band shift W d
kσ

can be evaluated by introducing extra B operators, as in
the original Roth’s procedure. Combining the equation (9)
and the relation given in equation (24), it is possible to
write

〈BAn〉 = Fω

∑

m

G̃nm(ω)〈[Am, B](+)〉, (A.1)

where An and Am are members of the set of operators
given in equation (12). For evaluate 〈nd

jσnd
0σ〉 − (nd

0σ)2, it
has been necessary to introduce the following B operators:

B
(1)
kjσ =

1√
L

∑

i

e−ik·Rind
i+jσd†iσ (A.2)

and
B

(2)
kjσ =

1√
L

∑

i

e−ik·Rind
i+j−σd†iσ. (A.3)

By considering the operator given in the equa-
tion (A.2), the correlation function 〈nd

jσnd
0σ〉 can be writ-

ten as:
〈nd

jσnd
0σ〉 =

1
L

∑

k

〈B(1)
kjσdkσ〉 (A.4)

where the right side of equation (A.4) may be obtained
using the relation given by equation (A.1). Therefore, it is
necessary to evaluate the anticommutators [Am, B

(1)
klσ](+)

for the set of operators Am given in equation (12). For
m = 1...5, the A operators are given by:

A1kσ =
1√
L

∑

l

eik·Rldlσ , (A.5)

A2kσ =
1√
L

∑

l

eik·Rlnd
l−σdlσ , (A.6)

A3kσ =
1√
L

∑

l

eik·Rld†l−σ, (A.7)

A4kσ =
1√
L

∑

l

eik·Rlnd
lσd†l−σ (A.8)

and
A5kσ =

1√
L

∑

l

eik·Rlplσ. (A.9)

Thus, the following results have been obtained

〈[A1kσ, B
(1)
kjσ](+)〉 = nd

0σ − eik·Rj 〈d†0σdjσ〉, (A.10)

〈[A2kσ, B
(1)
kjσ](+)〉 = 〈nd

0−σnd
jσ〉 − eik·Rj 〈d†0σnd

j−σdjσ〉,
(A.11)

〈[A3kσ, B
(1)
kjσ ](+)〉 = 0, (A.12)

〈[A4kσ, B
(1)
kjσ ](+)〉 = −〈nd

jσd†0σd†0−σ〉, (A.13)

〈[A5kσ, B
(1)
kjσ](+)〉 = 0 (A.14)

where, it has been assumed that the brackets are real
and unchanged when the indices 0 and j are inter-
changed. Also, due to translational invariance of the
system, nd

0σ = nd
jσ. Considering the relations given by

equations (A.1) and (A.4) with the results from equa-
tion (A.10) to equation (A.14), the correlation function
〈nd

jσnd
0σ〉 can be written as:

〈nd
lσnd

0σ〉 = ασnd
σ − αjσnd

0jσ + βσ〈nd
0−σnd

jσ〉 − βjσmjσ

+ β(1)
σ 〈nd

jσd†0−σd†0σ〉 (A.15)

where nd
0σ = nd

σ. In equation (A.15), it has been intro-
duced the following definitions:

nd
0jσ = 〈d†0σdjσ〉 =

1
L

∑

k

FωG11
kσeik·Rj , (A.16)

mjσ = 〈d†0σnd
j−σdjσ〉 =

1
L

∑

k

FωG12
kσeik·Rj , (A.17)

αjσ =
1
L

∑

k

FωG̃11
kσeik·Rj , (A.18)

βjσ =
1
L

∑

k

FωG̃12
kσeik·Rj (A.19)

and
β

(1)
jσ =

1
L

∑

k

FωG̃14
kσeik·Rj (A.20)

where G11
kσ is given in equation (25). The remaining

Green’s functions G12
kσ and G14

kσ are given respectively by

G12
kσ(ω) =

nd−σ(ω − E55)
[
B (ω) − (ω + E11)γk

2
]

D (ω)
(A.21)

and

G14
kσ(ω) = (nd

−σ)2(1 − nd
−σ)2Uγk

× (ω − E55)(ω + E11 − Und
−σ)

D (ω)
(A.22)

where B (ω) is defined in equation (55) and D (ω) in equa-
tion (36). It is also necessary to define

G̃11
kσ(ω) =

G11
kσ(ω) − G12

kσ(ω)
1 − nd−σ

, (A.23)
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G̃12
kσ(ω) =

G12
kσ(ω) − nd−σG11

kσ(ω)
nd−σ(1 − nd−σ)

(A.24)

and

G̃14
kσ(ω) =

G14
kσ(ω) − nd

−σG13
kσ(ω)

nd−σ(1 − nd−σ)
(A.25)

where G13
kσ is given in equation (45).

The correlation function 〈nd
0−σnd

jσ〉 present in equa-
tion (A.15), can be obtained by repeating the procedure
above using the operator B

(2)
kjσ (given by Eq (A.3)). Thus,

〈nd
j−σnd

0σ〉 = ασnd
−σ + βσ〈nd

0−σnd
j−σ〉 + α

(1)
jσ n

(1)
0jσ

+β
(1)
jσ m

(1)
jσ − β(1)

σ 〈nd
j−σd†0σd†0−σ〉 (A.26)

where

n
(1)
0jσ = 〈dj−σd0σ〉 =

1
L

∑

k

FωG13
kσeik·Rj , (A.27)

m
(1)
jσ = 〈dj−σnd

jσd0σ〉 =
1
L

∑

k

FωG14
kσeik·Rj , (A.28)

and
α

(1)
jσ =

1
L

∑

k

FωG̃13
kσeik·Rj (A.29)

with

G̃13
kσ(ω) =

G13
kσ(ω) − G14

kσ(ω)
1 − nd−σ

. (A.30)

Reversing the spin labels i.e., σ → −σ in equa-
tion (A.26) and substituting the result into equa-
tion (A.15), then

〈nd
jσnd

0σ〉 =
ασnd

σ − αjσnd
0jσ + βσα−σnd

σ − βjσmjσ

1 − βσβ−σ

+
1

1 − βσβ−σ

[
βσ(α(1)

j−σn
(1)
0j−σ + β

(1)
j−σm

(1)
j−σ)

+(βσβ
(1)
−σ + β(1)

σ )〈nd
jσd†0−σd†0σ〉

]
. (A.31)

For evaluate the two last correlation functions
present in equation (58), the following operators have
been introduced

B
(3)
kjσ =

1√
L

∑

i

e−ik·Rid†i+jσdi+j−σd†i−σ (A.32)

and

B
(4)
kjσ =

1√
L

∑

i

e−ik·Rid†i+jσd†i+j−σdi−σ . (A.33)

Using B3, and following the procedure outlined above, the
correlation function 〈d†jσdj−σd†0−σd0σ〉 is given by

〈SjS0〉 = 〈d†jσdj−σd†0−σd0σ〉 = − 1
1 + βσ

[
αjσnd

0j−σ

+βjσmj−σ − α
(1)
jσ n

(1)
0j−σ − β

(1)
jσ m

(1)
j−σ

]
.

(A.34)

Similarly, using B4

〈d†jσd†j−σd0−σd0σ〉 =
αjσnd

0j−σ + βjσ(nd
0j−σ − mj−σ)

1 − βσ

+
β

(1)
σ 〈nd

0σd†jσd†j−σ〉
1 − βσ

(A.35)

where the d-wave symmetry has been considered, there-
fore, 〈d†jσd†j−σ〉 = 0.

The four B(p) operators introduced up to now are ex-
actly the same operators used by Roth in reference [9] to
obtain the band shift Wkσ in the normal state and with-
out hybridization. However, in the present work, due to
the presence of the hole operators (see Eq. (12)), a new
B operator, which is given by

B
(5)
kjσ =

1√
L

∑

i

e−ik·Rid†iσdi+jσdi+j−σ , (A.36)

has been introduced. With this operator, the correlation
function 〈nd

0σd†jσd†j−σ〉 present in equation (A.35) may be
evaluated. Thus,

〈d†0σdj−σdjσd0σ〉 =
α

(1)
jσ nd

0jσ + β
(1)
jσ (nd

0jσ − mjσ)
1 − βσ

.

(A.37)

Substituting the result (A.37) into equation (A.35), the
correlation function 〈d†jσd†j−σd0−σd0σ〉 can be rewrit-
ten as:

〈d†jσd†j−σd0−σd0σ〉 =
αjσnd

0j−σ + βjσ(nd
0j−σ − mj−σ)

1 − βσ

+
β

(1)
σ [α(1)

jσ nd
0jσ + β

(1)
jσ (nd

0jσ − mjσ)]
(1 − βσ)2

.

(A.38)

The result given in equation (A.37) can be used in
equation (A.31) to obtain

〈nd
jσnd

0σ〉 = (nd
0jσ)2 − αjσnd

0jσ + βjσmjσ

1 − βσβ−σ

+
1

1 − βσβ−σ

[
βσ(α(1)

−σn
(1)
0j−σ + β

(1)
j−σm

(1)
j−σ)

−α
(1)
jσ nd

0jσ(βσβ
(1)
−σ + β

(1)
σ )

1 − βσ

− β
(1)
jσ (nd

0jσ − mjσ)(βσβ
(1)
−σ + β

(1)
σ )

1 − βσ

]
.(A.39)

Finally, with the results (A.37), (A.38) and (A.39) into
equation (59), the following result has been obtained

nd
−σ(1 − nd

−σ)W d
kσ = h1σ +

∑

j �=0

td0je
ik·Rj (h2jσ + h3jσ)

(A.40)
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where
h1σ = −

∑

j �=0

td0j(n
d
j0σ − 2mjσ), (A.41)

h2jσ = −
{

αjσnd
0jσ + βjσmjσ

1 − βσβ−σ
+

αjσnd
0j−σ + βjσmj−σ

1 + βσ

+
αjσnd

0j−σ + βjσ(nd
0j−σ − mj−σ)

1 − βσ

}
, (A.42)

h3jσ = φjσ

{
α

(1)
jσ nd

0jσ + β
(1)
jσ (nd

0jσ − mjσ)
1 − βσ

}

−βσ[α(1)
j−σn

(1)
0j−σ + β

(1)
j−σmj−σ ]

1 − βσβ−σ

−α
(1)
jσ n

(1)
0j−σ + β

(1)
jσ m

(1)
j−σ

1 + βσ
(A.43)

with

φjσ =
(β(1)

σ

1 − βσ
+

βσβ
(1)
−σ + β

(1)
σ

1 − βσβ−σ
. (A.44)
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